CLAMP (Closed Loop Automation Management Platform)

Projects that follow the best practices below can voluntarily self-certify and show that they've achieved an Open Source Security Foundation (OpenSSF) best practices badge.

If this is your project, please show your badge status on your project page! The badge status looks like this: Badge level for project 1197 is in_progress Here is how to embed it:

These are the Gold level criteria. You can also view the Passing or Silver level criteria.

        

 Basics 3/5

  • Identification

    CLAMP is a platform for designing and managing control loops. It is used to design a closed loop, configure it with specific parameters for a particular network service, then deploying and undeploying it. Once deployed, the user can also update the loop with new parameters during runtime, as well as suspending and restarting it.

    It interacts with other systems to deploy and execute the closed loop. For example, it pushes the control loop design to the SDC catalog, associating it with the VF resource. It requests from DCAE the instantiation of microservices to manage the closed loop flow. Further, it creates and updates multiple policies in the Policy Engine that define the closed loop flow.

    The ONAP CLAMP platform abstracts the details of these systems under the concept of a control loop model. The design of a control loop and its management is represented by a workflow in which all relevant system interactions take place. This is essential for a self-service model of creating and managing control loops, where no low-level user interaction with other components is required.

    At a higher level, CLAMP is about supporting and managing the broad operational life cycle of VNFs/VMs and ultimately ONAP components itself. It will offer the ability to design, test, deploy and update control loop automation - both closed and open. Automating these functions would represent a significant saving on operational costs compared to traditional methods.

  • Prerequisites


    The project MUST achieve a silver level badge. [achieve_silver]

  • Project oversight


    The project MUST have a "bus factor" of 2 or more. (URL required) [bus_factor]

    The project MUST have at least two unassociated significant contributors. (URL required) [contributors_unassociated]

  • Other


    The project MUST include a license statement in each source file. This MAY be done by including the following inside a comment near the beginning of each file: SPDX-License-Identifier: [SPDX license expression for project]. [license_per_file]

    All source files are copyrighted and licensed according to contribution guidelines.


  • Public version-controlled source repository


    The project's source repository MUST use a common distributed version control software (e.g., git or mercurial). [repo_distributed]

    Git and Gerrit are used.



    The project MUST clearly identify small tasks that can be performed by new or casual contributors. (URL required) [small_tasks]


    The project MUST require two-factor authentication (2FA) for developers for changing a central repository or accessing sensitive data (such as private vulnerability reports). This 2FA mechanism MAY use mechanisms without cryptographic mechanisms such as SMS, though that is not recommended. [require_2FA]


    The project's two-factor authentication (2FA) SHOULD use cryptographic mechanisms to prevent impersonation. Short Message Service (SMS) based 2FA, by itself, does NOT meet this criterion, since it is not encrypted. [secure_2FA]

  • Coding standards


    The project MUST document its code review requirements, including how code review is conducted, what must be checked, and what is required to be acceptable. (URL required) [code_review_standards]


    The project MUST have at least 50% of all proposed modifications reviewed before release by a person other than the author, to determine if it is a worthwhile modification and free of known issues which would argue against its inclusion [two_person_review]

    THis policy is enforced in Gerrit code review tool


  • Working build system


    The project MUST have a reproducible build. If no building occurs (e.g., scripting languages where the source code is used directly instead of being compiled), select "not applicable" (N/A). (URL required) [build_reproducible]

    All builds are fully automated and reproductiible from the source. (buidls are maven based) All scripts are publicly available under the ci-management repo : https://gerrit.onap.org/r/gitweb?p=ci-management.git;a=tree;h=refs/heads/master;hb=refs/heads/master


  • Automated test suite


    A test suite MUST be invocable in a standard way for that language. (URL required) [test_invocation]

    The test is launched by default while building the software, this is integrated in the maven build. This is explained in the development guide for CLAMP : https://wiki.onap.org/display/DW/CLAMP+Development+Guide



    The project MUST implement continuous integration, where new or changed code is frequently integrated into a central code repository and automated tests are run on the result. (URL required) [test_continuous_integration]

    For each pull request, the project needs to be built successfully before the Merge option becomes activated. The test will be run automatically during the building process as well. Once build successfully and all tests has past, the Merge option will be activated. see https://jenkins.onap.org



    The project MUST have FLOSS automated test suite(s) that provide at least 90% statement coverage if there is at least one FLOSS tool that can measure this criterion in the selected language. [test_statement_coverage90]

    The project is moving towards this goal.



    The project MUST have FLOSS automated test suite(s) that provide at least 80% branch coverage if there is at least one FLOSS tool that can measure this criterion in the selected language. [test_branch_coverage80]

    The project is moving towards this goal.


  • Use basic good cryptographic practices

    Note that some software does not need to use cryptographic mechanisms. If your project produces software that (1) includes, activates, or enables encryption functionality, and (2) might be released from the United States (US) to outside the US or to a non-US-citizen, you may be legally required to take a few extra steps. Typically this just involves sending an email. For more information, see the encryption section of Understanding Open Source Technology & US Export Controls.

    The software produced by the project MUST support secure protocols for all of its network communications, such as SSHv2 or later, TLS1.2 or later (HTTPS), IPsec, SFTP, and SNMPv3. Insecure protocols such as FTP, HTTP, telnet, SSLv3 or earlier, and SSHv1 MUST be disabled by default, and only enabled if the user specifically configures it. If the software produced by the project does not support network communications, select "not applicable" (N/A). [crypto_used_network]

    all connection can be secured by TLS (configurable) https://wiki.onap.org/display/DW/CLAMP+Project



    The software produced by the project MUST, if it supports or uses TLS, support at least TLS version 1.2. Note that the predecessor of TLS was called SSL. If the software does not use TLS, select "not applicable" (N/A). [crypto_tls12]

    CLAMP uses AAF and thus defaults all clients to HTTP/S TLS 1.1 & 1.2


  • Secured delivery against man-in-the-middle (MITM) attacks


    The project website, repository (if accessible via the web), and download site (if separate) MUST include key hardening headers with nonpermissive values. (URL required) [hardened_site]

    // X-Content-Type-Options was not set to "nosniff".


  • Other security issues


    The project MUST have performed a security review within the last 5 years. This review MUST consider the security requirements and security boundary. [security_review]


    Hardening mechanisms MUST be used in the software produced by the project so that software defects are less likely to result in security vulnerabilities. (URL required) [hardening]

    This mainly java based or javascript we don't use compiler to generate binaries. we didn't configure csp header eiher.


  • Dynamic code analysis


    The project MUST apply at least one dynamic analysis tool to any proposed major production release of the software produced by the project before its release. [dynamic_analysis]


    The project SHOULD include many run-time assertions in the software it produces and check those assertions during dynamic analysis. [dynamic_analysis_enable_assertions]

    Assert are used mainly in the unit test for now. We throw exceptions by ourselves in Clamp code.



This data is available under the Creative Commons Attribution version 3.0 or later license (CC-BY-3.0+). All are free to share and adapt the data, but must give appropriate credit. Please credit mrsjackson76 and the OpenSSF Best Practices badge contributors.

Project badge entry owned by: mrsjackson76.
Entry created on 2017-08-18 09:38:45 UTC, last updated on 2023-06-12 18:06:05 UTC. Last lost passing badge on 2023-06-12 18:06:05 UTC. Last achieved passing badge on 2019-05-14 13:44:42 UTC.

Back