bork

Projects that follow the best practices below can voluntarily self-certify and show that they've achieved an Open Source Security Foundation (OpenSSF) best practices badge.

If this is your project, please show your badge status on your project page! The badge status looks like this: Badge level for project 7578 is in_progress Here is how to embed it:

These are the Passing level criteria. You can also view the Silver or Gold level criteria.

        

 Basics 12/13

  • Identification

    A Python build and release management tool.

    What programming language(s) are used to implement the project?
  • Basic project website content


    The project website MUST succinctly describe what the software does (what problem does it solve?). [description_good]

    The README on https://github.com/duckinator/bork explains what it does.



    The project website MUST provide information on how to: obtain, provide feedback (as bug reports or enhancements), and contribute to the software. [interact]

    The README on https://github.com/duckinator/bork explains how to install it as well, as where to file issues and pull requests.



    The information on how to contribute MUST explain the contribution process (e.g., are pull requests used?) (URL required) [contribution]

    Projects on GitHub by default use issues and pull requests, as encouraged by documentation such as https://guides.github.com/activities/contributing-to-open-source/.



    The information on how to contribute SHOULD include the requirements for acceptable contributions (e.g., a reference to any required coding standard). (URL required) [contribution_requirements]

  • FLOSS license

    What license(s) is the project released under?



    The software produced by the project MUST be released as FLOSS. [floss_license]

    The MIT license is approved by the Open Source Initiative (OSI).



    It is SUGGESTED that any required license(s) for the software produced by the project be approved by the Open Source Initiative (OSI). [floss_license_osi]

    The MIT license is approved by the Open Source Initiative (OSI).



    The project MUST post the license(s) of its results in a standard location in their source repository. (URL required) [license_location]

    The LICENSE.txt file is in the root of the project: https://github.com/duckinator/bork/blob/main/LICENSE.txt.

    The README.md file also states it is released under the MIT license.


  • Documentation


    The project MUST provide basic documentation for the software produced by the project. [documentation_basics]

    The README.md file provides basic usage information, and links to https://bork.readthedocs.io: https://github.com/duckinator/bork.



    The project MUST provide reference documentation that describes the external interface (both input and output) of the software produced by the project. [documentation_interface]
  • Other


    The project sites (website, repository, and download URLs) MUST support HTTPS using TLS. [sites_https]

    All project websites support TLS.



    The project MUST have one or more mechanisms for discussion (including proposed changes and issues) that are searchable, allow messages and topics to be addressed by URL, enable new people to participate in some of the discussions, and do not require client-side installation of proprietary software. [discussion]

    GitHub supports discussions on issues and pull requests.



    The project SHOULD provide documentation in English and be able to accept bug reports and comments about code in English. [english]


    The project MUST be maintained. [maintained]


(Advanced) What other users have additional rights to edit this badge entry? Currently: []



  • Public version-controlled source repository


    The project MUST have a version-controlled source repository that is publicly readable and has a URL. [repo_public]

    Repository on GitHub, which provides public git repositories with URLs.



    The project's source repository MUST track what changes were made, who made the changes, and when the changes were made. [repo_track]

    Repository on GitHub, which uses git. git can track the changes, who made them, and when they were made.



    To enable collaborative review, the project's source repository MUST include interim versions for review between releases; it MUST NOT include only final releases. [repo_interim]

    The GitHub repository is the canonical source. Builds are made from the branch named "main".



    It is SUGGESTED that common distributed version control software be used (e.g., git) for the project's source repository. [repo_distributed]

    Repository on GitHub, which uses git. git is distributed.


  • Unique version numbering


    The project results MUST have a unique version identifier for each release intended to be used by users. [version_unique]

    The release process is initiated by changing the version number in the source tree. This process means there can not be a release without updating the version identifier.



    It is SUGGESTED that the Semantic Versioning (SemVer) or Calendar Versioning (CalVer) version numbering format be used for releases. It is SUGGESTED that those who use CalVer include a micro level value. [version_semver]


    It is SUGGESTED that projects identify each release within their version control system. For example, it is SUGGESTED that those using git identify each release using git tags. [version_tags]

    Using GitHub Releases means that a tag is automatically created for each release.


  • Release notes


    The project MUST provide, in each release, release notes that are a human-readable summary of major changes in that release to help users determine if they should upgrade and what the upgrade impact will be. The release notes MUST NOT be the raw output of a version control log (e.g., the "git log" command results are not release notes). Projects whose results are not intended for reuse in multiple locations (such as the software for a single website or service) AND employ continuous delivery MAY select "N/A". (URL required) [release_notes]

    The GitHub Releases page (https://github.com/duckinator/bork/releases) includes all pull requests merged for each release.



    The release notes MUST identify every publicly known run-time vulnerability fixed in this release that already had a CVE assignment or similar when the release was created. This criterion may be marked as not applicable (N/A) if users typically cannot practically update the software themselves (e.g., as is often true for kernel updates). This criterion applies only to the project results, not to its dependencies. If there are no release notes or there have been no publicly known vulnerabilities, choose N/A. [release_notes_vulns]

    There have been no CVEs. If the project ever gets a CVE and that CVE is known to be addressed by a release, it will be included in the release notes. If this is ever not done, it should be considered a bug and should be reported in the issue tracker.


  • Bug-reporting process


    The project MUST provide a process for users to submit bug reports (e.g., using an issue tracker or a mailing list). (URL required) [report_process]

    Bug reports are accepted on the issue tracker: https://github.com/duckinator/bork/issues



    The project SHOULD use an issue tracker for tracking individual issues. [report_tracker]

    The project MUST acknowledge a majority of bug reports submitted in the last 2-12 months (inclusive); the response need not include a fix. [report_responses]


    The project SHOULD respond to a majority (>50%) of enhancement requests in the last 2-12 months (inclusive). [enhancement_responses]


    The project MUST have a publicly available archive for reports and responses for later searching. (URL required) [report_archive]

    Issues remain available at https://github.com/duckinator/bork/issues and Pull Requests remain available at https://github.com/duckinator/bork/pulls.


  • Vulnerability report process


    The project MUST publish the process for reporting vulnerabilities on the project site. (URL required) [vulnerability_report_process]

    There is a SECURITY.md file in the root directory, documenting the process for reporting vulnerabilities: https://github.com/duckinator/bork/blob/main/SECURITY.md



    If private vulnerability reports are supported, the project MUST include how to send the information in a way that is kept private. (URL required) [vulnerability_report_private]

    The process described in SECURITY.md uses GitHub's Security Advisories feature: https://github.com/duckinator/bork/blob/main/SECURITY.md



    The project's initial response time for any vulnerability report received in the last 6 months MUST be less than or equal to 14 days. [vulnerability_report_response]

  • Working build system


    If the software produced by the project requires building for use, the project MUST provide a working build system that can automatically rebuild the software from source code. [build]


    It is SUGGESTED that common tools be used for building the software. [build_common_tools]

    The entire purpose of Bork is to make it easy to leverage PEP 517, PEP 518, and other related standards for Python projects. We try to have Bork be an example of this by following PEP 517 and PEP 518, meaning any tool compliant with these standards should be able to build Bork.

    If you find that this is not true, it is considered a bug. Please open an issue about it.



    The project SHOULD be buildable using only FLOSS tools. [build_floss_tools]

  • Automated test suite


    The project MUST use at least one automated test suite that is publicly released as FLOSS (this test suite may be maintained as a separate FLOSS project). The project MUST clearly show or document how to run the test suite(s) (e.g., via a continuous integration (CI) script or via documentation in files such as BUILD.md, README.md, or CONTRIBUTING.md). [test]


    A test suite SHOULD be invocable in a standard way for that language. [test_invocation]


    It is SUGGESTED that the test suite cover most (or ideally all) the code branches, input fields, and functionality. [test_most]


    It is SUGGESTED that the project implement continuous integration (where new or changed code is frequently integrated into a central code repository and automated tests are run on the result). [test_continuous_integration]

  • New functionality testing


    The project MUST have a general policy (formal or not) that as major new functionality is added to the software produced by the project, tests of that functionality should be added to an automated test suite. [test_policy]


    The project MUST have evidence that the test_policy for adding tests has been adhered to in the most recent major changes to the software produced by the project. [tests_are_added]

    We strive to do this, but have not done so consistently.

    When bork dependencies was added, the functionality was merged without tests. Later on, it broke and we didn't notice until later. We don't even know how long it was broken for.



    It is SUGGESTED that this policy on adding tests (see test_policy) be documented in the instructions for change proposals. [tests_documented_added]

  • Warning flags


    The project MUST enable one or more compiler warning flags, a "safe" language mode, or use a separate "linter" tool to look for code quality errors or common simple mistakes, if there is at least one FLOSS tool that can implement this criterion in the selected language. [warnings]

    The project is configured for pylint and mypy, and this is made easier to use with the bork run lint alias.



    The project MUST address warnings. [warnings_fixed]

    CI has a task which runs the bork run lint alias.



    It is SUGGESTED that projects be maximally strict with warnings in the software produced by the project, where practical. [warnings_strict]

    If the CI lint task fails, it fails the entire CI run. These are addressed as appropriate by resolving the warning, adding a one-off ignore, or disabling a particular linter check.


  • Secure development knowledge


    The project MUST have at least one primary developer who knows how to design secure software. (See ‘details’ for the exact requirements.) [know_secure_design]


    At least one of the project's primary developers MUST know of common kinds of errors that lead to vulnerabilities in this kind of software, as well as at least one method to counter or mitigate each of them. [know_common_errors]

  • Use basic good cryptographic practices

    Note that some software does not need to use cryptographic mechanisms. If your project produces software that (1) includes, activates, or enables encryption functionality, and (2) might be released from the United States (US) to outside the US or to a non-US-citizen, you may be legally required to take a few extra steps. Typically this just involves sending an email. For more information, see the encryption section of Understanding Open Source Technology & US Export Controls.

    The software produced by the project MUST use, by default, only cryptographic protocols and algorithms that are publicly published and reviewed by experts (if cryptographic protocols and algorithms are used). [crypto_published]


    If the software produced by the project is an application or library, and its primary purpose is not to implement cryptography, then it SHOULD only call on software specifically designed to implement cryptographic functions; it SHOULD NOT re-implement its own. [crypto_call]


    All functionality in the software produced by the project that depends on cryptography MUST be implementable using FLOSS. [crypto_floss]


    The security mechanisms within the software produced by the project MUST use default keylengths that at least meet the NIST minimum requirements through the year 2030 (as stated in 2012). It MUST be possible to configure the software so that smaller keylengths are completely disabled. [crypto_keylength]


    The default security mechanisms within the software produced by the project MUST NOT depend on broken cryptographic algorithms (e.g., MD4, MD5, single DES, RC4, Dual_EC_DRBG), or use cipher modes that are inappropriate to the context, unless they are necessary to implement an interoperable protocol (where the protocol implemented is the most recent version of that standard broadly supported by the network ecosystem, that ecosystem requires the use of such an algorithm or mode, and that ecosystem does not offer any more secure alternative). The documentation MUST describe any relevant security risks and any known mitigations if these broken algorithms or modes are necessary for an interoperable protocol. [crypto_working]


    The default security mechanisms within the software produced by the project SHOULD NOT depend on cryptographic algorithms or modes with known serious weaknesses (e.g., the SHA-1 cryptographic hash algorithm or the CBC mode in SSH). [crypto_weaknesses]


    The security mechanisms within the software produced by the project SHOULD implement perfect forward secrecy for key agreement protocols so a session key derived from a set of long-term keys cannot be compromised if one of the long-term keys is compromised in the future. [crypto_pfs]


    If the software produced by the project causes the storing of passwords for authentication of external users, the passwords MUST be stored as iterated hashes with a per-user salt by using a key stretching (iterated) algorithm (e.g., Argon2id, Bcrypt, Scrypt, or PBKDF2). See also OWASP Password Storage Cheat Sheet. [crypto_password_storage]


    The security mechanisms within the software produced by the project MUST generate all cryptographic keys and nonces using a cryptographically secure random number generator, and MUST NOT do so using generators that are cryptographically insecure. [crypto_random]

  • Secured delivery against man-in-the-middle (MITM) attacks


    The project MUST use a delivery mechanism that counters MITM attacks. Using https or ssh+scp is acceptable. [delivery_mitm]


    A cryptographic hash (e.g., a sha1sum) MUST NOT be retrieved over http and used without checking for a cryptographic signature. [delivery_unsigned]

  • Publicly known vulnerabilities fixed


    There MUST be no unpatched vulnerabilities of medium or higher severity that have been publicly known for more than 60 days. [vulnerabilities_fixed_60_days]


    Projects SHOULD fix all critical vulnerabilities rapidly after they are reported. [vulnerabilities_critical_fixed]

  • Other security issues


    The public repositories MUST NOT leak a valid private credential (e.g., a working password or private key) that is intended to limit public access. [no_leaked_credentials]

  • Static code analysis


    At least one static code analysis tool (beyond compiler warnings and "safe" language modes) MUST be applied to any proposed major production release of the software before its release, if there is at least one FLOSS tool that implements this criterion in the selected language. [static_analysis]

    GitHub's CodeQL code scanning is ran on each pull request before it can be merged into the main branch, AND releases must be done via pull requests.



    It is SUGGESTED that at least one of the static analysis tools used for the static_analysis criterion include rules or approaches to look for common vulnerabilities in the analyzed language or environment. [static_analysis_common_vulnerabilities]


    All medium and higher severity exploitable vulnerabilities discovered with static code analysis MUST be fixed in a timely way after they are confirmed. [static_analysis_fixed]


    It is SUGGESTED that static source code analysis occur on every commit or at least daily. [static_analysis_often]

    GitHub's CodeQL code scanning is ran on each pull request before it can be merged into the main branch.


  • Dynamic code analysis


    It is SUGGESTED that at least one dynamic analysis tool be applied to any proposed major production release of the software before its release. [dynamic_analysis]


    It is SUGGESTED that if the software produced by the project includes software written using a memory-unsafe language (e.g., C or C++), then at least one dynamic tool (e.g., a fuzzer or web application scanner) be routinely used in combination with a mechanism to detect memory safety problems such as buffer overwrites. If the project does not produce software written in a memory-unsafe language, choose "not applicable" (N/A). [dynamic_analysis_unsafe]


    It is SUGGESTED that the project use a configuration for at least some dynamic analysis (such as testing or fuzzing) which enables many assertions. In many cases these assertions should not be enabled in production builds. [dynamic_analysis_enable_assertions]


    All medium and higher severity exploitable vulnerabilities discovered with dynamic code analysis MUST be fixed in a timely way after they are confirmed. [dynamic_analysis_fixed]


This data is available under the Creative Commons Attribution version 3.0 or later license (CC-BY-3.0+). All are free to share and adapt the data, but must give appropriate credit. Please credit Ellen Marie Dash and the OpenSSF Best Practices badge contributors.

Project badge entry owned by: Ellen Marie Dash.
Entry created on 2023-07-17 01:24:48 UTC, last updated on 2023-07-17 03:56:55 UTC.

Back