midgard

Projects that follow the best practices below can voluntarily self-certify and show that they've achieved an Open Source Security Foundation (OpenSSF) best practices badge.

If this is your project, please show your badge status on your project page! The badge status looks like this: Badge level for project 9251 is passing Here is how to embed it:

These are the Passing level criteria. You can also view the Silver or Gold level criteria.

        

 Basics 13/13

  • Identification

    Golang middleware collection and tooling.

    What programming language(s) are used to implement the project?
  • Basic project website content


    The project website MUST succinctly describe what the software does (what problem does it solve?). [description_good]

    The information on how to contribute MUST explain the contribution process (e.g., are pull requests used?) (URL required) [contribution]

    Non-trivial contribution file in repository: https://github.com/AlphaOne1/midgard/blob/master/CONTRIBUTING.md.



    The information on how to contribute SHOULD include the requirements for acceptable contributions (e.g., a reference to any required coding standard). (URL required) [contribution_requirements]
  • FLOSS license

    What license(s) is the project released under?



    The software produced by the project MUST be released as FLOSS. [floss_license]

    The MPL-2.0 license is approved by the Open Source Initiative (OSI).



    It is SUGGESTED that any required license(s) for the software produced by the project be approved by the Open Source Initiative (OSI). [floss_license_osi]

    The MPL-2.0 license is approved by the Open Source Initiative (OSI).



    The project MUST post the license(s) of its results in a standard location in their source repository. (URL required) [license_location]

    Non-trivial license location file in repository: https://github.com/AlphaOne1/midgard/blob/master/LICENSE.


  • Documentation


    The project MUST provide basic documentation for the software produced by the project. [documentation_basics]

    The README files in the various folders serve as the documentation for all software parts.



    The project MUST provide reference documentation that describes the external interface (both input and output) of the software produced by the project. [documentation_interface]

    https://github.com/AlphaOne1/midgard/blob/master/README.md and each subdirectory with parts of the library contains another README specific for this part of the library including an example.


  • Other


    The project sites (website, repository, and download URLs) MUST support HTTPS using TLS. [sites_https]

    Given only https: URLs.



    The project MUST have one or more mechanisms for discussion (including proposed changes and issues) that are searchable, allow messages and topics to be addressed by URL, enable new people to participate in some of the discussions, and do not require client-side installation of proprietary software. [discussion]

    GitHub supports discussions on issues and pull requests.



    The project SHOULD provide documentation in English and be able to accept bug reports and comments about code in English. [english]

    https://github.com/AlphaOne1/midgard/blob/master/README.md as the top level information is in English. All other information is also given in English.



    The project MUST be maintained. [maintained]


(Advanced) What other users have additional rights to edit this badge entry? Currently: []



  • Public version-controlled source repository


    The project MUST have a version-controlled source repository that is publicly readable and has a URL. [repo_public]

    Repository on GitHub, which provides public git repositories with URLs.



    The project's source repository MUST track what changes were made, who made the changes, and when the changes were made. [repo_track]

    Repository on GitHub, which uses git. git can track the changes, who made them, and when they were made.



    To enable collaborative review, the project's source repository MUST include interim versions for review between releases; it MUST NOT include only final releases. [repo_interim]

    The Github repository is also used for all development. Release branches and tags will be created at the time of release.



    It is SUGGESTED that common distributed version control software be used (e.g., git) for the project's source repository. [repo_distributed]

    Repository on GitHub, which uses git. git is distributed.


  • Unique version numbering


    The project results MUST have a unique version identifier for each release intended to be used by users. [version_unique]

    As the project is still developing, using it in Go will use a specific commit ID. Go itself proposes semantic versioning that will be employed on release versions.



    It is SUGGESTED that the Semantic Versioning (SemVer) or Calendar Versioning (CalVer) version numbering format be used for releases. It is SUGGESTED that those who use CalVer include a micro level value. [version_semver]


    It is SUGGESTED that projects identify each release within their version control system. For example, it is SUGGESTED that those using git identify each release using git tags. [version_tags]

    Go uses tags of the form v1.2.3 to semantically identify versions. Specific releases are not necessary. If there is not such tag available, Go uses the commit ID.


  • Release notes


    The project MUST provide, in each release, release notes that are a human-readable summary of major changes in that release to help users determine if they should upgrade and what the upgrade impact will be. The release notes MUST NOT be the raw output of a version control log (e.g., the "git log" command results are not release notes). Projects whose results are not intended for reuse in multiple locations (such as the software for a single website or service) AND employ continuous delivery MAY select "N/A". (URL required) [release_notes]

    There are yet no releases. Release notes will be added, as soon as releases with version numbers are made. That process is explicated in https://github.com/AlphaOne1/midgard/blob/master/CONTRIBUTING.md



    The release notes MUST identify every publicly known run-time vulnerability fixed in this release that already had a CVE assignment or similar when the release was created. This criterion may be marked as not applicable (N/A) if users typically cannot practically update the software themselves (e.g., as is often true for kernel updates). This criterion applies only to the project results, not to its dependencies. If there are no release notes or there have been no publicly known vulnerabilities, choose N/A. [release_notes_vulns]

    There are yet no release notes. When release notes are added, the requested information about publicly known run-time vulnerabilities will be included. This process is additionally explicated in https://github.com/AlphaOne1/midgard/blob/master/SECURITY.md


  • Bug-reporting process


    The project MUST provide a process for users to submit bug reports (e.g., using an issue tracker or a mailing list). (URL required) [report_process]

    Github offers an issue tracker using here https://github.com/AlphaOne1/midgard/issues



    The project SHOULD use an issue tracker for tracking individual issues. [report_tracker]

    The issue tracker of Github is used.



    The project MUST acknowledge a majority of bug reports submitted in the last 2-12 months (inclusive); the response need not include a fix. [report_responses]

    Every issue that is reported will be answered within few days.



    The project SHOULD respond to a majority (>50%) of enhancement requests in the last 2-12 months (inclusive). [enhancement_responses]

    Every enhancement request will be answered within few days, be it approval, denial or further clarification.



    The project MUST have a publicly available archive for reports and responses for later searching. (URL required) [report_archive]

    Github saves bugs and issues for later searching here: https://github.com/AlphaOne1/midgard/issues


  • Vulnerability report process


    The project MUST publish the process for reporting vulnerabilities on the project site. (URL required) [vulnerability_report_process]

    If private vulnerability reports are supported, the project MUST include how to send the information in a way that is kept private. (URL required) [vulnerability_report_private]

    https://github.com/AlphaOne1/midgard/blob/master/SECURITY.md contains the information, that private vulnerability reporting is enabled and links to the detailed description of Github.



    The project's initial response time for any vulnerability report received in the last 6 months MUST be less than or equal to 14 days. [vulnerability_report_response]

  • Working build system


    If the software produced by the project requires building for use, the project MUST provide a working build system that can automatically rebuild the software from source code. [build]

    Generally software that uses the library uses the command "go build" , the common build command for Go.



    It is SUGGESTED that common tools be used for building the software. [build_common_tools]

    "go build" is the common build command for basically all Go-based software.



    The project SHOULD be buildable using only FLOSS tools. [build_floss_tools]

    "go build" uses just the open source Go tools.


  • Automated test suite


    The project MUST use at least one automated test suite that is publicly released as FLOSS (this test suite may be maintained as a separate FLOSS project). The project MUST clearly show or document how to run the test suite(s) (e.g., via a continuous integration (CI) script or via documentation in files such as BUILD.md, README.md, or CONTRIBUTING.md). [test]

    The tests are standard Go tests, that are integrated into the GitHub Actions.



    A test suite SHOULD be invocable in a standard way for that language. [test_invocation]

    Go has the "go test" command, to run the integrated tests. One of these test files can be found here https://github.com/AlphaOne1/midgard/blob/master/handler/access_log/access_log_test.go. All files with the _test suffix contain tests. A general manual for the tests can be found here: https://pkg.go.dev/testing.



    It is SUGGESTED that the test suite cover most (or ideally all) the code branches, input fields, and functionality. [test_most]

    Currently the test coverage is about 90%. Untested branches are hardly to provoke situations of I/O errors.



    It is SUGGESTED that the project implement continuous integration (where new or changed code is frequently integrated into a central code repository and automated tests are run on the result). [test_continuous_integration]

    The tests of the test suite test the code (Go HTTP middleware) with the Go httptest package, thus in a realistic environment.


  • New functionality testing


    The project MUST have a general policy (formal or not) that as major new functionality is added to the software produced by the project, tests of that functionality should be added to an automated test suite. [test_policy]

    The project MUST have evidence that the test_policy for adding tests has been adhered to in the most recent major changes to the software produced by the project. [tests_are_added]

    The project tracks the code coverage. Any non-tested major contribution would decrease the coverage. The project uses codecov.io.



    It is SUGGESTED that this policy on adding tests (see test_policy) be documented in the instructions for change proposals. [tests_documented_added]
  • Warning flags


    The project MUST enable one or more compiler warning flags, a "safe" language mode, or use a separate "linter" tool to look for code quality errors or common simple mistakes, if there is at least one FLOSS tool that can implement this criterion in the selected language. [warnings]

    All code is run through staticcheck, CodeQL and Trivy.



    The project MUST address warnings. [warnings_fixed]

    Warnings are taken serious. Too many "low level" warnings could easily overlay critical warnings. Thus all warnings are to be addressed. The matter is explicated also in https://github.com/AlphaOne1/midgard/blob/master/CONTRIBUTING.md.



    It is SUGGESTED that projects be maximally strict with warnings in the software produced by the project, where practical. [warnings_strict]

    https://github.com/AlphaOne1/midgard/blob/master/CONTRIBUTING.md states that all warnings are to be resolved.


  • Secure development knowledge


    The project MUST have at least one primary developer who knows how to design secure software. (See ‘details’ for the exact requirements.) [know_secure_design]


    At least one of the project's primary developers MUST know of common kinds of errors that lead to vulnerabilities in this kind of software, as well as at least one method to counter or mitigate each of them. [know_common_errors]

  • Use basic good cryptographic practices

    Note that some software does not need to use cryptographic mechanisms. If your project produces software that (1) includes, activates, or enables encryption functionality, and (2) might be released from the United States (US) to outside the US or to a non-US-citizen, you may be legally required to take a few extra steps. Typically this just involves sending an email. For more information, see the encryption section of Understanding Open Source Technology & US Export Controls.

    The software produced by the project MUST use, by default, only cryptographic protocols and algorithms that are publicly published and reviewed by experts (if cryptographic protocols and algorithms are used). [crypto_published]

    No custom algorithms are used.



    If the software produced by the project is an application or library, and its primary purpose is not to implement cryptography, then it SHOULD only call on software specifically designed to implement cryptographic functions; it SHOULD NOT re-implement its own. [crypto_call]

    The used algorithms stem only from libraries.



    All functionality in the software produced by the project that depends on cryptography MUST be implementable using FLOSS. [crypto_floss]


    The security mechanisms within the software produced by the project MUST use default keylengths that at least meet the NIST minimum requirements through the year 2030 (as stated in 2012). It MUST be possible to configure the software so that smaller keylengths are completely disabled. [crypto_keylength]

    This software only uses results of cryptographic operations. The decisions for key lengths are not in the responsibility of this software.



    The default security mechanisms within the software produced by the project MUST NOT depend on broken cryptographic algorithms (e.g., MD4, MD5, single DES, RC4, Dual_EC_DRBG), or use cipher modes that are inappropriate to the context, unless they are necessary to implement an interoperable protocol (where the protocol implemented is the most recent version of that standard broadly supported by the network ecosystem, that ecosystem requires the use of such an algorithm or mode, and that ecosystem does not offer any more secure alternative). The documentation MUST describe any relevant security risks and any known mitigations if these broken algorithms or modes are necessary for an interoperable protocol. [crypto_working]

    This library does not implement cryptographic protocols. The securing layer is not part of this library.



    The default security mechanisms within the software produced by the project SHOULD NOT depend on cryptographic algorithms or modes with known serious weaknesses (e.g., the SHA-1 cryptographic hash algorithm or the CBC mode in SSH). [crypto_weaknesses]


    The security mechanisms within the software produced by the project SHOULD implement perfect forward secrecy for key agreement protocols so a session key derived from a set of long-term keys cannot be compromised if one of the long-term keys is compromised in the future. [crypto_pfs]

    This type of algorithms is not part of this library.



    If the software produced by the project causes the storing of passwords for authentication of external users, the passwords MUST be stored as iterated hashes with a per-user salt by using a key stretching (iterated) algorithm (e.g., Argon2id, Bcrypt, Scrypt, or PBKDF2). See also OWASP Password Storage Cheat Sheet. [crypto_password_storage]

    This library does not store user passwords. It can, however read e.g. a htpasswd. External libraries are used to read it only. No storage is implemented.



    The security mechanisms within the software produced by the project MUST generate all cryptographic keys and nonces using a cryptographically secure random number generator, and MUST NOT do so using generators that are cryptographically insecure. [crypto_random]

    This library does not generated cryptographically relevant keys.


  • Secured delivery against man-in-the-middle (MITM) attacks


    The project MUST use a delivery mechanism that counters MITM attacks. Using https or ssh+scp is acceptable. [delivery_mitm]

    This library can use https, But it is not in the hand of this library to either check or enforce this.



    A cryptographic hash (e.g., a sha1sum) MUST NOT be retrieved over http and used without checking for a cryptographic signature. [delivery_unsigned]

  • Publicly known vulnerabilities fixed


    There MUST be no unpatched vulnerabilities of medium or higher severity that have been publicly known for more than 60 days. [vulnerabilities_fixed_60_days]

    govulncheck, CodeQL and Trivy are used to scan for these types of vulnerabilities. Errors are reported and the corresponding branch cannot be merged until the fix is included.



    Projects SHOULD fix all critical vulnerabilities rapidly after they are reported. [vulnerabilities_critical_fixed]

    As stated before, branches with these vulnerabilities are not eligible to be merged to the master or any release branch.


  • Other security issues


    The public repositories MUST NOT leak a valid private credential (e.g., a working password or private key) that is intended to limit public access. [no_leaked_credentials]

    Trivy scans for these leaks. The project repository does not need to contain any of these kind of information, also not for tests.


  • Static code analysis


    At least one static code analysis tool (beyond compiler warnings and "safe" language modes) MUST be applied to any proposed major production release of the software before its release, if there is at least one FLOSS tool that implements this criterion in the selected language. [static_analysis]

    CodeQL, staticcheck



    It is SUGGESTED that at least one of the static analysis tools used for the static_analysis criterion include rules or approaches to look for common vulnerabilities in the analyzed language or environment. [static_analysis_common_vulnerabilities]

    Some of the checks of staticcheck are that way.



    All medium and higher severity exploitable vulnerabilities discovered with static code analysis MUST be fixed in a timely way after they are confirmed. [static_analysis_fixed]

    All findings are either reported as issues and will be fixed or are already found offline using staticcheck, govulncheck and others and fixed before upload.



    It is SUGGESTED that static source code analysis occur on every commit or at least daily. [static_analysis_often]

    All commits are checked against those rules automatically by GitHub.


  • Dynamic code analysis


    It is SUGGESTED that at least one dynamic analysis tool be applied to any proposed major production release of the software before its release. [dynamic_analysis]

    Use of unit tests and fuzz testing.



    It is SUGGESTED that if the software produced by the project includes software written using a memory-unsafe language (e.g., C or C++), then at least one dynamic tool (e.g., a fuzzer or web application scanner) be routinely used in combination with a mechanism to detect memory safety problems such as buffer overwrites. If the project does not produce software written in a memory-unsafe language, choose "not applicable" (N/A). [dynamic_analysis_unsafe]

    Go is a garbage collected language.



    It is SUGGESTED that the project use a configuration for at least some dynamic analysis (such as testing or fuzzing) which enables many assertions. In many cases these assertions should not be enabled in production builds. [dynamic_analysis_enable_assertions]

    As Midgard is a library, there are no assumptions about the environment. All incoming data must be checked.



    All medium and higher severity exploitable vulnerabilities discovered with dynamic code analysis MUST be fixed in a timely way after they are confirmed. [dynamic_analysis_fixed]

    All findings are either reported as issues and will be fixed or are already found offline the supplied tests.



This data is available under the Creative Commons Attribution version 3.0 or later license (CC-BY-3.0+). All are free to share and adapt the data, but must give appropriate credit. Please credit AlphaOne1 and the OpenSSF Best Practices badge contributors.

Project badge entry owned by: AlphaOne1.
Entry created on 2024-07-27 07:46:00 UTC, last updated on 2024-08-03 23:50:33 UTC. Last achieved passing badge on 2024-08-03 22:27:51 UTC.

Back