fedfred

Projects that follow the best practices below can voluntarily self-certify and show that they've achieved an Open Source Security Foundation (OpenSSF) best practices badge.

If this is your project, please show your badge status on your project page! The badge status looks like this: Badge level for project 10158 is gold Here is how to embed it:

These are the Gold level criteria. You can also view the Passing or Silver level criteria.

        

 Basics 5/5

  • Identification

    A feature-rich python package for interacting with the Federal Reserve Bank of St. Louis Economic Database: FRED

  • Prerrequisitos


    El proyecto DEBE lograr una insignia de nivel plata. [achieve_silver]

  • Supervisión del proyecto


    The project MUST have a "bus factor" of 2 or more. (URL required) [bus_factor]

    The project has a "bus factor" of 2 or more, ensuring that it can continue without interruption if one key contributor becomes unavailable. Multiple maintainers have access to critical resources, including the GitHub repository, release management, and issue tracking. This ensures that the project can continue to create and close issues, accept proposed changes, and release new versions.

    The governance model and contribution process are documented in the CONTRIBUTING.md file: https://github.com/nikhilxsunder/fedfred/blob/main/CONTRIBUTING.md.

    Additionally, access credentials for critical resources are securely shared among trusted maintainers to ensure continuity.



    The project MUST have at least two unassociated significant contributors. (URL required) [contributors_unassociated]

    The project has at least two unassociated significant contributors. This information can be verified through the GitHub repository's contributors page, which lists all contributors and their contributions: https://github.com/nikhilxsunder/fedfred/graphs/contributors.

    The contributors include individuals from different organizations who have made non-trivial contributions, such as writing code, adding documentation, and improving the project over the past year.


  • Other


    The project MUST include a license statement in each source file. This MAY be done by including the following inside a comment near the beginning of each file: SPDX-License-Identifier: [SPDX license expression for project]. [license_per_file]

    The project includes a license statement in each source file using the SPDX license identifier. For example: license = "AGPL-3.0-or-later"


  • Repositorio público para el control de versiones de código fuente


    The project's source repository MUST use a common distributed version control software (e.g., git or mercurial). [repo_distributed]

    Repository on GitHub, which uses git. git is distributed.



    The project MUST clearly identify small tasks that can be performed by new or casual contributors. (URL required) [small_tasks]

    The project identifies small tasks for new or casual contributors by tagging issues in the GitHub issue tracker with labels such as "good first issue" and "help wanted". These tasks include improving documentation, adding test cases, and fixing minor bugs.

    You can view these tasks in the project's issue tracker at: https://github.com/nikhilxsunder/fedfred/issues.



    The project MUST require two-factor authentication (2FA) for developers for changing a central repository or accessing sensitive data (such as private vulnerability reports). This 2FA mechanism MAY use mechanisms without cryptographic mechanisms such as SMS, though that is not recommended. [require_2FA]

    The project requires two-factor authentication (2FA) for all developers with access to the central repository. GitHub enforces 2FA for contributors with elevated permissions, such as those who can merge pull requests or access private vulnerability reports.

    For more details, see the GitHub repository settings: https://github.com/nikhilxsunder/fedfred/settings.



    The project's two-factor authentication (2FA) SHOULD use cryptographic mechanisms to prevent impersonation. Short Message Service (SMS) based 2FA, by itself, does NOT meet this criterion, since it is not encrypted. [secure_2FA]

    The project uses GitHub for repository management, and GitHub supports Time-based One-Time Password (TOTP) applications for two-factor authentication (2FA). Contributors with elevated permissions are required to enable 2FA, ensuring secure authentication using cryptographic mechanisms.

    For more details, see the GitHub repository settings: https://github.com/nikhilxsunder/fedfred/settings.


  • Coding standards


    The project MUST document its code review requirements, including how code review is conducted, what must be checked, and what is required to be acceptable. (URL required) [code_review_standards]

    The project documents its code review requirements in the CONTRIBUTING.md file. The code review process includes the following:

    How Code Review is Conducted:

    All pull requests must be reviewed by at least one maintainer before merging. Reviews are conducted through GitHub's pull request review system. What Must Be Checked:

    Code must adhere to the project's coding standards (e.g., PEP 8, type hints, and docstrings). Static analysis tools (pylint, mypy, bandit) must pass without warnings. Tests must cover new functionality and pass successfully. Documentation must be updated for any new features or changes. Requirements for Acceptability:

    Code must be clear, concise, and maintainable. All tests must pass, and test coverage must meet the project's standards. Pull requests must include a clear description of the changes and reference related issues. For more details, see the code review section in the CONTRIBUTING.md file. https://github.com/nikhilxsunder/fedfred/blob/main/CONTRIBUTING.md



    The project MUST have at least 50% of all proposed modifications reviewed before release by a person other than the author, to determine if it is a worthwhile modification and free of known issues which would argue against its inclusion [two_person_review]

    The project ensures that at least 50% of all proposed modifications are reviewed by someone other than the author before release. This is documented in the CONTRIBUTING.md file, which specifies that all pull requests must undergo a code review process.

    The review process includes: - Verifying that the modification aligns with the project's goals. - Checking for adherence to coding standards and guidelines. - Ensuring the modification is free of known issues.

    For more details, see the code review section in the CONTRIBUTING.md file. https://github.com/nikhilxsunder/fedfred/blob/main/CONTRIBUTING.md


  • Working build system


    The project MUST have a reproducible build. If no building occurs (e.g., scripting languages where the source code is used directly instead of being compiled), select "not applicable" (N/A). (URL required) [build_reproducible]

    The project is a Python library and does not involve a build process that generates compiled binaries or artifacts. The source code is used directly, making this criterion Not Applicable (N/A).

    For more details, see the repository: https://github.com/nikhilxsunder/fedfred.


  • Automated test suite


    A test suite MUST be invocable in a standard way for that language. (URL required) [test_invocation]

    The project's test suite can be invoked in a standard way using pytest, which is a widely-used testing framework in Python. The tests are run with the following command:

    pytest

    For more details, see the CONTRIBUTING.md file. https://github.com/nikhilxsunder/fedfred/blob/main/CONTRIBUTING.md



    The project MUST implement continuous integration, where new or changed code is frequently integrated into a central code repository and automated tests are run on the result. (URL required) [test_continuous_integration]

    The project implements continuous integration using GitHub Actions. Automated workflows are triggered on every push and pull request to the central repository. These workflows include building the project, running automated tests, and performing static analysis to ensure code quality.

    For more details, see the GitHub Actions workflows in the repository: https://github.com/nikhilxsunder/fedfred/actions.



    The project MUST have FLOSS automated test suite(s) that provide at least 90% statement coverage if there is at least one FLOSS tool that can measure this criterion in the selected language. [test_statement_coverage90]

    The project currently has an overall test coverage of 90%, as documented in the TEST_COVERAGE.md file.

    The project uses pytest with the pytest-cov plugin to measure test coverage, and contributors are encouraged to write tests for all new functionality and bug fixes to help meet this goal.



    The project MUST have FLOSS automated test suite(s) that provide at least 80% branch coverage if there is at least one FLOSS tool that can measure this criterion in the selected language. [test_branch_coverage80]

    The project currently has an overall test coverage of 90%, as documented in the TEST_COVERAGE.md file.

    The project uses pytest with the pytest-cov plugin to measure test coverage, including branch coverage. Contributors are encouraged to write tests for all new functionality and edge cases to help achieve the 80% branch coverage goal.


  • Use buenas prácticas criptográficas

    Note that some software does not need to use cryptographic mechanisms. If your project produces software that (1) includes, activates, or enables encryption functionality, and (2) might be released from the United States (US) to outside the US or to a non-US-citizen, you may be legally required to take a few extra steps. Typically this just involves sending an email. For more information, see the encryption section of Understanding Open Source Technology & US Export Controls.

    The software produced by the project MUST support secure protocols for all of its network communications, such as SSHv2 or later, TLS1.2 or later (HTTPS), IPsec, SFTP, and SNMPv3. Insecure protocols such as FTP, HTTP, telnet, SSLv3 or earlier, and SSHv1 MUST be disabled by default, and only enabled if the user specifically configures it. If the software produced by the project does not support network communications, select "not applicable" (N/A). [crypto_used_network]

    The software produced by the project communicates with the FRED API exclusively over HTTPS, which uses TLS 1.2 or later for secure network communications. Insecure protocols such as HTTP are not supported. This ensures that all network communications are encrypted and secure by default.

    For more details, see the SECURITY.md file: https://github.com/nikhilxsunder/fedfred/blob/main/SECURITY.md.



    The software produced by the project MUST, if it supports or uses TLS, support at least TLS version 1.2. Note that the predecessor of TLS was called SSL. If the software does not use TLS, select "not applicable" (N/A). [crypto_tls12]

    The software produced by the project communicates with the FRED API exclusively over HTTPS, which uses TLS 1.2 or later for secure communication. Therefore, this criterion is met. For more details, see the SECURITY.md file: https://github.com/nikhilxsunder/fedfred/blob/main/SECURITY.md.


  • Entrega garantizada contra ataques de hombre en el medio (MITM)


    The project website, repository (if accessible via the web), and download site (if separate) MUST include key hardening headers with nonpermissive values. (URL required) [hardened_site]

    The project repository is hosted on GitHub, which includes key hardening headers with nonpermissive values. GitHub enforces the following security headers:

    1. Content Security Policy (CSP): Restricts the sources from which content can be loaded.
    2. HTTP Strict Transport Security (HSTS): Ensures all connections are made over HTTPS.
    3. X-Content-Type-Options: Set to "nosniff" to prevent MIME type sniffing.
    4. X-Frame-Options: Prevents the site from being embedded in iframes to mitigate clickjacking attacks.

    For verification, you can check the repository at: https://github.com/nikhilxsunder/fedfred.


  • Otros problemas de seguridad


    The project MUST have performed a security review within the last 5 years. This review MUST consider the security requirements and security boundary. [security_review]

    The project has performed a security review within the last 5 years. This review included:

    1. Static Analysis: Automated tools like bandit and GitHub CodeQL were used to identify potential security vulnerabilities in the codebase.
    2. Dynamic Analysis: The project uses pytest with security-focused tests to validate runtime behavior.
    3. Human Review: A manual review of the project's security design, including its threat model, trust boundaries, and secure design principles, was conducted to identify issues that automated tools might miss.

    Details of the security review process and findings are documented in the SECURITY.md file.



    Hardening mechanisms MUST be used in the software produced by the project so that software defects are less likely to result in security vulnerabilities. (URL required) [hardening]

    The project incorporates hardening mechanisms to reduce the likelihood of software defects resulting in security vulnerabilities:

    HTTP Security: The project enforces HTTPS for all API communications, ensuring secure data transmission. Static Analysis: Tools like bandit are used to identify and mitigate common security issues in Python code. Dependency Management: Regular updates and dependency scanning with GitHub Dependabot ensure that third-party libraries are secure. Type Safety: The use of Python type hints and static type checking with mypy helps prevent undefined behavior. For more details, see the SECURITY.md file: https://github.com/nikhilxsunder/fedfred/blob/main/SECURITY.md.


  • Dynamic code analysis


    The project MUST apply at least one dynamic analysis tool to any proposed major production release of the software produced by the project before its release. [dynamic_analysis]

    Yes, the project applies property-based testing using Hypothesis before major releases. Hypothesis is a dynamic analysis tool that systematically varies inputs to identify edge cases and potential bugs. Our implementation generates diverse test cases for API parameters, date ranges, and configuration options, testing boundary conditions and unexpected inputs.

    This is formally integrated into our release process, as documented in CONTRIBUTING.md. We've created a dedicated GitHub workflow (dynamic-analysis.yml) that runs property-based tests automatically when PRs are labeled as "release-candidate" and on a weekly schedule. We also perform API response fuzzing and error condition simulation as part of this process.

    The property-based tests examine how our code behaves with thousands of automatically generated inputs, helping us discover edge cases traditional testing might miss. This approach is particularly valuable for our API client, as it ensures robustness against unexpected API responses and parameter combinations.



    The project SHOULD include many run-time assertions in the software it produces and check those assertions during dynamic analysis. [dynamic_analysis_enable_assertions]

    Yes, the project uses numerous assertions in its test suite, particularly in our property-based tests with Hypothesis. These assertions validate invariants, boundary conditions, and error handling throughout the codebase. We explicitly configure our testing environment to enable assertions by using the Python -B flag in our CI workflows. Our CONTRIBUTING.md documents this practice and instructs contributors to use assertions for validating assumptions during testing, while noting that production deployments might run with assertions disabled for performance reasons.



This data is available under the Community Data License Agreement – Permissive, Version 2.0 (CDLA-Permissive-2.0). This means that a Data Recipient may share the Data, with or without modifications, so long as the Data Recipient makes available the text of this agreement with the shared Data. Please credit Nikhil Sunder and the OpenSSF Best Practices badge contributors.

Project badge entry owned by: Nikhil Sunder.
Entry created on 2025-03-10 22:37:43 UTC, last updated on 2025-04-08 16:20:18 UTC. Last achieved passing badge on 2025-03-12 00:47:43 UTC.

Back