galasa-dev

Projects that follow the best practices below can voluntarily self-certify and show that they've achieved an Open Source Security Foundation (OpenSSF) best practices badge.

If this is your project, please show your badge status on your project page! The badge status looks like this: Badge level for project 8343 is passing Here is how to embed it:

These are the Passing level criteria. You can also view the Silver or Gold level criteria.

        

 Basics 13/13

  • Identification

    Galasa is a deep integration testing tool for z/OS powered hybrid cloud applications. It can test applications at scale regardless of platform, interact with multiple technologies, and integrate with a DevOps strategy.

    What programming language(s) are used to implement the project?
  • Basic project website content


    The project website MUST succinctly describe what the software does (what problem does it solve?). [description_good]

    The project website MUST provide information on how to: obtain, provide feedback (as bug reports or enhancements), and contribute to the software. [interact]

    There is info on the Support page (https://galasa.dev/support) on how to search for and raise issues, there are links on the Community page regarding how to contribute to Galasa (https://galasa.dev/community)



    La información sobre cómo contribuir DEBE explicar el proceso de contribución (por ejemplo, ¿se utilizan "pull requests" en el proyecto?) (URL required) [contribution]

    Contribution guidelines are here (https://github.com/galasa-dev/projectmanagement/blob/main/contributing.md) and are linked to from the Community page on the website



    The information on how to contribute SHOULD include the requirements for acceptable contributions (e.g., a reference to any required coding standard). (URL required) [contribution_requirements]

    Contribution guidelines are here (https://github.com/galasa-dev/projectmanagement/blob/main/contributing.md) and are linked to from the Community page on the website


  • FLOSS license

    What license(s) is the project released under?



    The software produced by the project MUST be released as FLOSS. [floss_license]


    It is SUGGESTED that any required license(s) for the software produced by the project be approved by the Open Source Initiative (OSI). [floss_license_osi]


    The project MUST post the license(s) of its results in a standard location in their source repository. (URL required) [license_location]
  • Documentation


    The project MUST provide basic documentation for the software produced by the project. [documentation_basics]

    Documentation is here: https://galasa.dev/docs



    The project MUST provide reference documentation that describes the external interface (both input and output) of the software produced by the project. [documentation_interface]

    Provided by the main website, plus javadoc, REST docs, CLI syntax references docs, all publically available: https://galasa.dev/docs


  • Other


    The project sites (website, repository, and download URLs) MUST support HTTPS using TLS. [sites_https]

    Given only https: URLs.



    The project MUST have one or more mechanisms for discussion (including proposed changes and issues) that are searchable, allow messages and topics to be addressed by URL, enable new people to participate in some of the discussions, and do not require client-side installation of proprietary software. [discussion]

    All discussions occur in issues in Github. For example: https://www.github.com/galasa-dev/projectmanagement



    The project SHOULD provide documentation in English and be able to accept bug reports and comments about code in English. [english]

    This information can be found in https://www.github.com/galasa-dev



    The project MUST be maintained. [maintained]

    The project Technical Steering Committee meet regularly to discuss ongoing issues: https://www.github.com/galasa-dev/TSC. Iteration planning and scrum meetings all happen here: https://www.github.com/galasa-dev/projectmanagement



(Advanced) What other users have additional rights to edit this badge entry? Currently: []



  • Repositorio público para el control de versiones de código fuente


    El proyecto DEBE tener un repositorio público para el control de versiones de código fuente que sea legible públicamente y tenga URL. [repo_public]

    Information can be found in https://www.github.com/galasa-dev under any of the repositories.



    El repositorio fuente del proyecto DEBE rastrear qué cambios se realizaron, quién realizó los cambios y cuándo se realizaron los cambios. [repo_track]

    Github provides this (https://www.github.com/galasa-dev) with Git SHA for each commit. Repository on GitHub, which uses git. git can track the changes, who made them, and when they were made.



    To enable collaborative review, the project's source repository MUST include interim versions for review between releases; it MUST NOT include only final releases. [repo_interim]

    Information can be found in https://www.github.com/galasa-dev under any of the repositories.



    It is SUGGESTED that common distributed version control software be used (e.g., git) for the project's source repository. [repo_distributed]

    Information can be found in https://www.github.com/galasa-dev under any of the repositories. Repository on GitHub, which uses git. git is distributed.


  • Numeración única de versión


    The project results MUST have a unique version identifier for each release intended to be used by users. [version_unique]

    Information can be found in https://www.github.com/galasa-dev under any of the repositories. The versioning can be seen as 0.29.0, 0.30.0, 0.31.0 under the branches.



    It is SUGGESTED that the Semantic Versioning (SemVer) or Calendar Versioning (CalVer) version numbering format be used for releases. It is SUGGESTED that those who use CalVer include a micro level value. [version_semver]


    It is SUGGESTED that projects identify each release within their version control system. For example, it is SUGGESTED that those using git identify each release using git tags. [version_tags]

    Information can be found in https://www.github.com/galasa-dev under any of the repositories. The versioning can be seen as 0.29.0, 0.30.0, 0.31.0 under the branches.


  • Notas de lanzamiento


    The project MUST provide, in each release, release notes that are a human-readable summary of major changes in that release to help users determine if they should upgrade and what the upgrade impact will be. The release notes MUST NOT be the raw output of a version control log (e.g., the "git log" command results are not release notes). Projects whose results are not intended for reuse in multiple locations (such as the software for a single website or service) AND employ continuous delivery MAY select "N/A". (URL required) [release_notes]

    Our docs carry such notes. See https://galasa.dev/releases



    The release notes MUST identify every publicly known run-time vulnerability fixed in this release that already had a CVE assignment or similar when the release was created. This criterion may be marked as not applicable (N/A) if users typically cannot practically update the software themselves (e.g., as is often true for kernel updates). This criterion applies only to the project results, not to its dependencies. If there are no release notes or there have been no publicly known vulnerabilities, choose N/A. [release_notes_vulns]

    There hasn't been a CVE on the Galasa project before.


  • Bug-reporting process


    The project MUST provide a process for users to submit bug reports (e.g., using an issue tracker or a mailing list). (URL required) [report_process]

    Github issues and comments on those issues: https://www.github.com/galasa-dev/projectmanagement



    The project SHOULD use an issue tracker for tracking individual issues. [report_tracker]

    Github issues and comments on those issues: https://www.github.com/galasa-dev/projectmanagement



    The project MUST acknowledge a majority of bug reports submitted in the last 2-12 months (inclusive); the response need not include a fix. [report_responses]


    The project SHOULD respond to a majority (>50%) of enhancement requests in the last 2-12 months (inclusive). [enhancement_responses]


    El proyecto DEBE tener un archivo públicamente disponible para informes y respuestas para búsquedas posteriores. (URL required) [report_archive]

    Github issues and comments on those issues: https://www.github.com/galasa-dev/projectmanagement


  • Proceso de informe de vulnerabilidad


    The project MUST publish the process for reporting vulnerabilities on the project site. (URL required) [vulnerability_report_process]

    If private vulnerability reports are supported, the project MUST include how to send the information in a way that is kept private. (URL required) [vulnerability_report_private]

    The project's initial response time for any vulnerability report received in the last 6 months MUST be less than or equal to 14 days. [vulnerability_report_response]

  • Working build system


    Si el software generado por el proyecto requiere ser construido para su uso, el proyecto DEBE proporcionar un sistema de compilación que pueda satisfactoriamente reconstruir automáticamente el software a partir del código fuente. [build]

    Galasa supplies built binaries for anything a user uses (except Simbank/platform). Galasa's build system currently runs internally, though each project is buildable on a developers' local laptop. Galasa uses tekton, shell, gradle, maven, compilers. All commonly used tools.



    Se SUGIERE que se utilicen herramientas comunes para construir el software. [build_common_tools]

    Galasa supplies built binaries for anything a user uses (except Simbank/platform). Galasa's build system currently runs internally, though each project is buildable on a developers' local laptop. Galasa uses tekton, shell, gradle, maven, compilers. All commonly used tools.



    El proyecto DEBERÍA ser construible usando solo herramientas FLOSS. [build_floss_tools]

    Galasa uses tekton, shell, gradle, maven, compilers. All commonly used tools.


  • Automated test suite


    The project MUST use at least one automated test suite that is publicly released as FLOSS (this test suite may be maintained as a separate FLOSS project). The project MUST clearly show or document how to run the test suite(s) (e.g., via a continuous integration (CI) script or via documentation in files such as BUILD.md, README.md, or CONTRIBUTING.md). [test]

    Galasa uses Galasa to test. See https://github.com/galasa-dev/integratedtests. These tests are run every morning, but results are not publicly available yet.



    Un conjunto de pruebas DEBERÍA ser invocable de forma estándar para ese lenguaje. [test_invocation]

    Galasa uses Galasa to test. See https://github.com/galasa-dev/integratedtests. These tests are run every morning, but results are not publicly available yet.



    It is SUGGESTED that the test suite cover most (or ideally all) the code branches, input fields, and functionality. [test_most]


    It is SUGGESTED that the project implement continuous integration (where new or changed code is frequently integrated into a central code repository and automated tests are run on the result). [test_continuous_integration]

  • New functionality testing


    The project MUST have a general policy (formal or not) that as major new functionality is added to the software produced by the project, tests of that functionality should be added to an automated test suite. [test_policy]


    The project MUST have evidence that the test_policy for adding tests has been adhered to in the most recent major changes to the software produced by the project. [tests_are_added]


    It is SUGGESTED that this policy on adding tests (see test_policy) be documented in the instructions for change proposals. [tests_documented_added]

  • Banderas de advertencia


    The project MUST enable one or more compiler warning flags, a "safe" language mode, or use a separate "linter" tool to look for code quality errors or common simple mistakes, if there is at least one FLOSS tool that can implement this criterion in the selected language. [warnings]


    El proyecto DEBE abordar las advertencias. [warnings_fixed]


    It is SUGGESTED that projects be maximally strict with warnings in the software produced by the project, where practical. [warnings_strict]

  • Conocimiento de desarrollo seguro


    The project MUST have at least one primary developer who knows how to design secure software. (See ‘details’ for the exact requirements.) [know_secure_design]

    Mike Cobbett, James Davies, Will Yates know secure design. Galasa is in the process of adding security features to the product.



    At least one of the project's primary developers MUST know of common kinds of errors that lead to vulnerabilities in this kind of software, as well as at least one method to counter or mitigate each of them. [know_common_errors]

    Mike Cobbett, James Davies, Will Yates know this.


  • Use buenas prácticas criptográficas

    Note that some software does not need to use cryptographic mechanisms. If your project produces software that (1) includes, activates, or enables encryption functionality, and (2) might be released from the United States (US) to outside the US or to a non-US-citizen, you may be legally required to take a few extra steps. Typically this just involves sending an email. For more information, see the encryption section of Understanding Open Source Technology & US Export Controls.

    The software produced by the project MUST use, by default, only cryptographic protocols and algorithms that are publicly published and reviewed by experts (if cryptographic protocols and algorithms are used). [crypto_published]


    Si el software producido por el proyecto es una aplicación o una librería, y su propósito principal no es implementar criptografía, entonces DEBE SOLAMENTE invocar un software específicamente diseñado para implementar funciones criptográficas; NO DEBERÍA volver a implementar el suyo. [crypto_call]


    All functionality in the software produced by the project that depends on cryptography MUST be implementable using FLOSS. [crypto_floss]


    The security mechanisms within the software produced by the project MUST use default keylengths that at least meet the NIST minimum requirements through the year 2030 (as stated in 2012). It MUST be possible to configure the software so that smaller keylengths are completely disabled. [crypto_keylength]


    The default security mechanisms within the software produced by the project MUST NOT depend on broken cryptographic algorithms (e.g., MD4, MD5, single DES, RC4, Dual_EC_DRBG), or use cipher modes that are inappropriate to the context, unless they are necessary to implement an interoperable protocol (where the protocol implemented is the most recent version of that standard broadly supported by the network ecosystem, that ecosystem requires the use of such an algorithm or mode, and that ecosystem does not offer any more secure alternative). The documentation MUST describe any relevant security risks and any known mitigations if these broken algorithms or modes are necessary for an interoperable protocol. [crypto_working]


    The default security mechanisms within the software produced by the project SHOULD NOT depend on cryptographic algorithms or modes with known serious weaknesses (e.g., the SHA-1 cryptographic hash algorithm or the CBC mode in SSH). [crypto_weaknesses]


    The security mechanisms within the software produced by the project SHOULD implement perfect forward secrecy for key agreement protocols so a session key derived from a set of long-term keys cannot be compromised if one of the long-term keys is compromised in the future. [crypto_pfs]


    If the software produced by the project causes the storing of passwords for authentication of external users, the passwords MUST be stored as iterated hashes with a per-user salt by using a key stretching (iterated) algorithm (e.g., Argon2id, Bcrypt, Scrypt, or PBKDF2). See also OWASP Password Storage Cheat Sheet. [crypto_password_storage]


    The security mechanisms within the software produced by the project MUST generate all cryptographic keys and nonces using a cryptographically secure random number generator, and MUST NOT do so using generators that are cryptographically insecure. [crypto_random]

  • Entrega garantizada contra ataques de hombre en el medio (MITM)


    The project MUST use a delivery mechanism that counters MITM attacks. Using https or ssh+scp is acceptable. [delivery_mitm]

    Galasa's download sites are HTTP accessed. We have a story tracking our move to HTTPS. All HTTP/HTTPS traffic goes through the IBM cloud networking service which handles MITM attacks.



    A cryptographic hash (e.g., a sha1sum) MUST NOT be retrieved over http and used without checking for a cryptographic signature. [delivery_unsigned]

    Galasa's download sites are HTTP accessed. We have a story tracking our move to HTTPS. All HTTP/HTTPS traffic goes through the IBM cloud networking service which handles MITM attacks.


  • Vulnerabilidades públicamente conocidas corregidas


    There MUST be no unpatched vulnerabilities of medium or higher severity that have been publicly known for more than 60 days. [vulnerabilities_fixed_60_days]


    Projects SHOULD fix all critical vulnerabilities rapidly after they are reported. [vulnerabilities_critical_fixed]

  • Otros problemas de seguridad


    The public repositories MUST NOT leak a valid private credential (e.g., a working password or private key) that is intended to limit public access. [no_leaked_credentials]

  • Análisis estático de código


    At least one static code analysis tool (beyond compiler warnings and "safe" language modes) MUST be applied to any proposed major production release of the software before its release, if there is at least one FLOSS tool that implements this criterion in the selected language. [static_analysis]

    Synk is used to scan Galasa.



    It is SUGGESTED that at least one of the static analysis tools used for the static_analysis criterion include rules or approaches to look for common vulnerabilities in the analyzed language or environment. [static_analysis_common_vulnerabilities]


    All medium and higher severity exploitable vulnerabilities discovered with static code analysis MUST be fixed in a timely way after they are confirmed. [static_analysis_fixed]


    It is SUGGESTED that static source code analysis occur on every commit or at least daily. [static_analysis_often]

  • Dynamic code analysis


    It is SUGGESTED that at least one dynamic analysis tool be applied to any proposed major production release of the software before its release. [dynamic_analysis]


    It is SUGGESTED that if the software produced by the project includes software written using a memory-unsafe language (e.g., C or C++), then at least one dynamic tool (e.g., a fuzzer or web application scanner) be routinely used in combination with a mechanism to detect memory safety problems such as buffer overwrites. If the project does not produce software written in a memory-unsafe language, choose "not applicable" (N/A). [dynamic_analysis_unsafe]


    It is SUGGESTED that the project use a configuration for at least some dynamic analysis (such as testing or fuzzing) which enables many assertions. In many cases these assertions should not be enabled in production builds. [dynamic_analysis_enable_assertions]


    All medium and higher severity exploitable vulnerabilities discovered with dynamic code analysis MUST be fixed in a timely way after they are confirmed. [dynamic_analysis_fixed]


This data is available under the Creative Commons Attribution version 3.0 or later license (CC-BY-3.0+). All are free to share and adapt the data, but must give appropriate credit. Please credit Louisa Seers and the OpenSSF Best Practices badge contributors.

Project badge entry owned by: Louisa Seers.
Entry created on 2024-01-25 15:51:42 UTC, last updated on 2024-05-21 18:16:10 UTC. Last achieved passing badge on 2024-05-21 18:16:10 UTC.

Back