Hyperledger Iroha

Projects that follow the best practices below can voluntarily self-certify and show that they've achieved an Open Source Security Foundation (OpenSSF) best practices badge.

If this is your project, please show your badge status on your project page! The badge status looks like this: Badge level for project 960 is passing Here is how to embed it:

These are the Silver level criteria. You can also view the Passing or Gold level criteria.

        

 Basics 17/17

  • Identification

    Iroha is a simple and straightforward DLT platform for asset and identity management. It has client libraries for mobile and web application development; novel consensus, called YAC, and SQL-powered validation.

  • Prerrequisitos


    The project MUST achieve a passing level badge. [achieve_passing]

  • Basic project website content


    The information on how to contribute MUST include the requirements for acceptable contributions (e.g., a reference to any required coding standard). (URL required) [contribution_requirements]

    A signed developer certificate of origin is required to contribute https://github.com/hyperledger/iroha/blob/master/CONTRIBUTING.md


  • Supervisión del proyecto


    The project SHOULD have a legal mechanism where all developers of non-trivial amounts of project software assert that they are legally authorized to make these contributions. The most common and easily-implemented approach for doing this is by using a Developer Certificate of Origin (DCO), where users add "signed-off-by" in their commits and the project links to the DCO website. However, this MAY be implemented as a Contributor License Agreement (CLA), or other legal mechanism. (URL required) [dco]

    The project requires contributors to check DCO. https://github.com/hyperledger/iroha/blob/master/CONTRIBUTING.md "Signed-off every commit with DCO: Signed-off-by: $NAME <$EMAIL>. You can do it automatically using git commit -s."



    The project MUST clearly define and document its project governance model (the way it makes decisions, including key roles). (URL required) [governance]

    The project MUST adopt a code of conduct and post it in a standard location. (URL required) [code_of_conduct]

    The project MUST clearly define and publicly document the key roles in the project and their responsibilities, including any tasks those roles must perform. It MUST be clear who has which role(s), though this might not be documented in the same way. (URL required) [roles_responsibilities]

    The project MUST be able to continue with minimal interruption if any one person dies, is incapacitated, or is otherwise unable or unwilling to continue support of the project. In particular, the project MUST be able to create and close issues, accept proposed changes, and release versions of software, within a week of confirmation of the loss of support from any one individual. This MAY be done by ensuring someone else has any necessary keys, passwords, and legal rights to continue the project. Individuals who run a FLOSS project MAY do this by providing keys in a lockbox and a will providing any needed legal rights (e.g., for DNS names). (URL required) [access_continuity]

    Hyperledger organization is a governing organization with multiple community architects: https://www.hyperledger.org/about/leadership. Also, project's bus factor is relatively high, which is good.



    The project SHOULD have a "bus factor" of 2 or more. (URL required) [bus_factor]

    Analysis over "dev" branch on December 4 2018: (this tool was used — https://github.com/aserg-ufmg/Truck-Factor/tree/master/gittruckfactor)

    2018-12-04 15:34:40 INFO hyperledger/iroha: Extracting and calculating authorship information... 2018-12-04 15:34:40 WARN DOACalculator:92 - No commits for test/module/irohad/ametsuchi/tx_presence_cache_stub.hpp TF = 7 (coverage = 46,18%) TF authors (Developer;Files;Percentage): Andrei Lebedev;314;21,23 Fyodor Muratov;185;12,51 Kitsu;178;12,04 kamilsa;134;9,06 grimadas;129;8,72 Akvinikym;104;7,03 Igor Egorov;101;6,83


  • Documentation


    The project MUST have a documented roadmap that describes what the project intends to do and not do for at least the next year. (URL required) [documentation_roadmap]

    https://soramitsucoltd.aha.io/published/e9bce93777c2c4b2448e4e6e78e90b4f?page=1

    Information should be updated regularly at iroha.tech/roadmap



    The project MUST include documentation of the architecture (aka high-level design) of the software produced by the project. If the project does not produce software, select "not applicable" (N/A). (URL required) [documentation_architecture]

    The project MUST document what the user can and cannot expect in terms of security from the software produced by the project (its "security requirements"). (URL required) [documentation_security]

    The project MUST provide a "quick start" guide for new users to help them quickly do something with the software. (URL required) [documentation_quick_start]

    The project MUST make an effort to keep the documentation consistent with the current version of the project results (including software produced by the project). Any known documentation defects making it inconsistent MUST be fixed. If the documentation is generally current, but erroneously includes some older information that is no longer true, just treat that as a defect, then track and fix as usual. [documentation_current]

    The project always have the latest documentation. Releases have their own version of documentation. The project uses readthedocs service in order to fulfill the requirement



    The project repository front page and/or website MUST identify and hyperlink to any achievements, including this best practices badge, within 48 hours of public recognition that the achievement has been attained. (URL required) [documentation_achievements]
  • Accessibility and internationalization


    The project (both project sites and project results) SHOULD follow accessibility best practices so that persons with disabilities can still participate in the project and use the project results where it is reasonable to do so. [accessibility_best_practices]

    All functionality is available from a keyboard. All the output is available in stdout and should be processed with required software.



    The software produced by the project SHOULD be internationalized to enable easy localization for the target audience's culture, region, or language. If internationalization (i18n) does not apply (e.g., the software doesn't generate text intended for end-users and doesn't sort human-readable text), select "not applicable" (N/A). [internationalization]

    Project's docs are translated into any language with the help of community: https://poeditor.com/join/project/SFpZw7o33o


  • Other


    If the project sites (website, repository, and download URLs) store passwords for authentication of external users, the passwords MUST be stored as iterated hashes with a per-user salt by using a key stretching (iterated) algorithm (e.g., Argon2id, Bcrypt, Scrypt, or PBKDF2). If the project sites do not store passwords for this purpose, select "not applicable" (N/A). [sites_password_security]

    We don't provide any service or authentication of our users.


  • Versiones anteriores


    The project MUST maintain the most often used older versions of the product or provide an upgrade path to newer versions. If the upgrade path is difficult, the project MUST document how to perform the upgrade (e.g., the interfaces that have changed and detailed suggested steps to help upgrade). [maintenance_or_update]

    We support backwards compatibility by versioning of client API and business objects. If migration has to occur — we will post a description for upgrade.


  • Bug-reporting process


    The project MUST use an issue tracker for tracking individual issues. [report_tracker]
  • Proceso de informe de vulnerabilidad


    The project MUST give credit to the reporter(s) of all vulnerability reports resolved in the last 12 months, except for the reporter(s) who request anonymity. If there have been no vulnerabilities resolved in the last 12 months, select "not applicable" (N/A). (URL required) [vulnerability_report_credit]

    Credits are given in the release notes:

    https://github.com/hyperledger/iroha/releases

    "Fix of critical vulnerabilities discovered during the security audit

    Previously, several problems existed:

    Blocks can be signed more than once by the same peer (fixed in #1193) Transactions can be signed more than once by the same signatory (fixed in #1302) If ed25519 library was modified to use a non-deterministic nonce, these vulnerabilities were likely to be used. Thanks to @dhuseby who helped us to unveil this tricky part of ed25519."



    The project MUST have a documented process for responding to vulnerability reports. (URL required) [vulnerability_response_process]

    Pull Request for CONTRIBUTING.md file: https://github.com/hyperledger/iroha/pull/2159/files


  • Coding standards


    The project MUST identify the specific coding style guides for the primary languages it uses, and require that contributions generally comply with it. (URL required) [coding_standards]

    The project MUST automatically enforce its selected coding style(s) if there is at least one FLOSS tool that can do so in the selected language(s). [coding_standards_enforced]

    we use git hooks that check if the code is conformant to clang-format checks


  • Working build system


    Build systems for native binaries MUST honor the relevant compiler and linker (environment) variables passed in to them (e.g., CC, CFLAGS, CXX, CXXFLAGS, and LDFLAGS) and pass them to compiler and linker invocations. A build system MAY extend them with additional flags; it MUST NOT simply replace provided values with its own. If no native binaries are being generated, select "not applicable" (N/A). [build_standard_variables]

    https://github.com/hyperledger/iroha/blob/master/CMakeLists.txt CMake and Iroha support clang, gcc and msvc compilers



    The build and installation system SHOULD preserve debugging information if they are requested in the relevant flags (e.g., "install -s" is not used). If there is no build or installation system (e.g., typical JavaScript libraries), select "not applicable" (N/A). [build_preserve_debug]

    https://github.com/hyperledger/iroha/blob/master/CMakeLists.txt debugging information is preserved in Debug build



    The build system for the software produced by the project MUST NOT recursively build subdirectories if there are cross-dependencies in the subdirectories. If there is no build or installation system (e.g., typical JavaScript libraries), select "not applicable" (N/A). [build_non_recursive]

    https://github.com/hyperledger/iroha/blob/master/CMakeLists.txt all the modules are clearly non-cross dependent



    The project MUST be able to repeat the process of generating information from source files and get exactly the same bit-for-bit result. If no building occurs (e.g., scripting languages where the source code is used directly instead of being compiled), select "not applicable" (N/A). [build_repeatable]

    We use docker image for dependencies that provides guarantee for bit-for-bit result, develop-build https://hub.docker.com/r/hyperledger/iroha/


  • Installation system


    The project MUST provide a way to easily install and uninstall the software produced by the project using a commonly-used convention. [installation_common]

    Software is installed as a docker container https://hub.docker.com/r/hyperledger/iroha/. Uninstallation process is typical.



    The installation system for end-users MUST honor standard conventions for selecting the location where built artifacts are written to at installation time. For example, if it installs files on a POSIX system it MUST honor the DESTDIR environment variable. If there is no installation system or no standard convention, select "not applicable" (N/A). [installation_standard_variables]

    Software is usually installed manually with docker container



    The project MUST provide a way for potential developers to quickly install all the project results and support environment necessary to make changes, including the tests and test environment. This MUST be performed with a commonly-used convention. [installation_development_quick]

    Software is usually installed manually with docker container. Tests can be run as explained here: https://iroha.readthedocs.io/en/latest/guides/build.html#running-tests-optional


  • Externally-maintained components


    The project MUST list external dependencies in a computer-processable way. (URL required) [external_dependencies]

    All external dependencies are resolved via CMakeLists https://github.com/hyperledger/iroha/blob/master/CMakeLists.txt



    Projects MUST monitor or periodically check their external dependencies (including convenience copies) to detect known vulnerabilities, and fix exploitable vulnerabilities or verify them as unexploitable. [dependency_monitoring]

    CMake files are periodically checked to contain vulnerable dependencies



    The project MUST either:
    1. make it easy to identify and update reused externally-maintained components; or
    2. use the standard components provided by the system or programming language.
    Then, if a vulnerability is found in a reused component, it will be easy to update that component. [updateable_reused_components]

    All the dependencies are listed as cmake modules. Inside each cmake file a dependency is fixed to a specified commit. Thus anyone can modify the commit, identity and update the version of dependency. Example https://github.com/hyperledger/iroha/blob/master/cmake/Modules/Findgrpc.cmake



    The project SHOULD avoid using deprecated or obsolete functions and APIs where FLOSS alternatives are available in the set of technology it uses (its "technology stack") and to a supermajority of the users the project supports (so that users have ready access to the alternative). [interfaces_current]

    We don't use deprecated API where possible


  • Automated test suite


    An automated test suite MUST be applied on each check-in to a shared repository for at least one branch. This test suite MUST produce a report on test success or failure. [automated_integration_testing]

    The project MUST add regression tests to an automated test suite for at least 50% of the bugs fixed within the last six months. [regression_tests_added50]

    There is a policy that for each bug there should be a regression. Example of fix and regression: https://github.com/hyperledger/iroha/pull/1894



    The project MUST have FLOSS automated test suite(s) that provide at least 80% statement coverage if there is at least one FLOSS tool that can measure this criterion in the selected language. [test_statement_coverage80]

    Coverage report does not meet this criteria https://out-8410xxpdz.now.sh


  • New functionality testing


    The project MUST have a formal written policy that as major new functionality is added, tests for the new functionality MUST be added to an automated test suite. [test_policy_mandated]

    The project MUST include, in its documented instructions for change proposals, the policy that tests are to be added for major new functionality. [tests_documented_added]
  • Banderas de advertencia


    Projects MUST be maximally strict with warnings in the software produced by the project, where practical. [warnings_strict]

    No warnings are allowed in compiler's output for pull request build


  • Conocimiento de desarrollo seguro


    The project MUST implement secure design principles (from "know_secure_design"), where applicable. If the project is not producing software, select "not applicable" (N/A). [implement_secure_design]

  • Use buenas prácticas criptográficas

    Note that some software does not need to use cryptographic mechanisms. If your project produces software that (1) includes, activates, or enables encryption functionality, and (2) might be released from the United States (US) to outside the US or to a non-US-citizen, you may be legally required to take a few extra steps. Typically this just involves sending an email. For more information, see the encryption section of Understanding Open Source Technology & US Export Controls.

    The default security mechanisms within the software produced by the project MUST NOT depend on cryptographic algorithms or modes with known serious weaknesses (e.g., the SHA-1 cryptographic hash algorithm or the CBC mode in SSH). [crypto_weaknesses]

    The project SHOULD support multiple cryptographic algorithms, so users can quickly switch if one is broken. Common symmetric key algorithms include AES, Twofish, and Serpent. Common cryptographic hash algorithm alternatives include SHA-2 (including SHA-224, SHA-256, SHA-384 AND SHA-512) and SHA-3. [crypto_algorithm_agility]

    We don't support other algorithms, but our crypto component is pluggable



    The project MUST support storing authentication credentials (such as passwords and dynamic tokens) and private cryptographic keys in files that are separate from other information (such as configuration files, databases, and logs), and permit users to update and replace them without code recompilation. If the project never processes authentication credentials and private cryptographic keys, select "not applicable" (N/A). [crypto_credential_agility]

    Files with private keys are separate from other information



    The software produced by the project SHOULD support secure protocols for all of its network communications, such as SSHv2 or later, TLS1.2 or later (HTTPS), IPsec, SFTP, and SNMPv3. Insecure protocols such as FTP, HTTP, telnet, SSLv3 or earlier, and SSHv1 SHOULD be disabled by default, and only enabled if the user specifically configures it. If the software produced by the project does not support network communications, select "not applicable" (N/A). [crypto_used_network]

    Right now we don't have implementation for this, but project roadmap already has items for TLS support in gRPC



    The software produced by the project SHOULD, if it supports or uses TLS, support at least TLS version 1.2. Note that the predecessor of TLS was called SSL. If the software does not use TLS, select "not applicable" (N/A). [crypto_tls12]


    The software produced by the project MUST, if it supports TLS, perform TLS certificate verification by default when using TLS, including on subresources. If the software does not use TLS, select "not applicable" (N/A). [crypto_certificate_verification]


    The software produced by the project MUST, if it supports TLS, perform certificate verification before sending HTTP headers with private information (such as secure cookies). If the software does not use TLS, select "not applicable" (N/A). [crypto_verification_private]

  • Secure release


    The project MUST cryptographically sign releases of the project results intended for widespread use, and there MUST be a documented process explaining to users how they can obtain the public signing keys and verify the signature(s). The private key for these signature(s) MUST NOT be on site(s) used to directly distribute the software to the public. If releases are not intended for widespread use, select "not applicable" (N/A). [signed_releases]

    Until first major release we don't sign our releases



    It is SUGGESTED that in the version control system, each important version tag (a tag that is part of a major release, minor release, or fixes publicly noted vulnerabilities) be cryptographically signed and verifiable as described in signed_releases. [version_tags_signed]

    Until first major release we don't sign our releases


  • Otros problemas de seguridad


    The project results MUST check all inputs from potentially untrusted sources to ensure they are valid (an *allowlist*), and reject invalid inputs, if there are any restrictions on the data at all. [input_validation]


    Hardening mechanisms SHOULD be used in the software produced by the project so that software defects are less likely to result in security vulnerabilities. [hardening]


    The project MUST provide an assurance case that justifies why its security requirements are met. The assurance case MUST include: a description of the threat model, clear identification of trust boundaries, an argument that secure design principles have been applied, and an argument that common implementation security weaknesses have been countered. (URL required) [assurance_case]

  • Análisis estático de código


    The project MUST use at least one static analysis tool with rules or approaches to look for common vulnerabilities in the analyzed language or environment, if there is at least one FLOSS tool that can implement this criterion in the selected language. [static_analysis_common_vulnerabilities]

    We use Codacy


  • Dynamic code analysis


    If the software produced by the project includes software written using a memory-unsafe language (e.g., C or C++), then at least one dynamic tool (e.g., a fuzzer or web application scanner) MUST be routinely used in combination with a mechanism to detect memory safety problems such as buffer overwrites. If the project does not produce software written in a memory-unsafe language, choose "not applicable" (N/A). [dynamic_analysis_unsafe]

    We use fuzzing tool: libfuzz & protomutator for gRPC endpoints



This data is available under the Creative Commons Attribution version 3.0 or later license (CC-BY-3.0+). All are free to share and adapt the data, but must give appropriate credit. Please credit 誠 and the OpenSSF Best Practices badge contributors.

Project badge entry owned by: .
Entry created on 2017-05-11 15:00:09 UTC, last updated on 2019-03-12 12:44:23 UTC. Last achieved passing badge on 2017-06-11 02:59:07 UTC.

Back